Face Parts Localization Using Structured-Output Regression Forests

نویسندگان

  • Heng Yang
  • Ioannis Patras
چکیده

In this paper, we propose a method for face parts localization called Structured-Output Regression Forests (SO-RF). We assume that the spatial graph of face parts structure can be partitioned into star graphs associated with individual parts. At each leaf, a regression model for an individual part as well as an interdependency model between parts in the star graph is learned. During testing, individual part positions are determined by the product of two voting maps, corresponding to two different models . The part regression model captures local feature evidence while the interdependency model captures the structure configuration. Our method has shown state of the art results on the publicly available BioID dataset and competitive results on a more challenging dataset, namely Labeled Face Parts in the Wild.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Semi-supervised Forest for Facial Landmarks Localization with Face Mask Reasoning

Despite the great success of recent facial landmarks localization approaches, the presence of occlusions significantly degrades the performance of the systems. However, very few works have addressed this problem explicitly due to the high diversity of occlusion in real world. In this paper, we address the face mask reasoning and facial landmarks localization in an unified Structured Decision Fo...

متن کامل

Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts

Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...

متن کامل

Regression Forests for Efficient Anatomy Detection and Localization in CT Studies

This paper proposes multi-class random regression forests as an algorithm for the efficient, automatic detection and localization of anatomical structures within three-dimensional CT scans. Regression forests are similar to the more popular classification forests, but trained to predict continuous outputs. We introduce a new, continuous parametrization of the anatomy localization task which is ...

متن کامل

Localization Boyan algorithm to detect forest fires from MODIS sensor images

Of phenomena which much damage and irreparable import to forests and natural resources is the fire that each year, more than 100 fires occur in Iran and thousands of hectares of trees and plants eliminates. Given that fire risk is high in most parts of the world, full and continuous monitoring on this natural phenomenon, is essential. Use remote sensing is a way to identify and manage fire. Ahe...

متن کامل

Regression forests for efficient anatomy detection and localization in computed tomography scans

This paper proposes a new algorithm for the efficient, automatic detection and localization of multiple anatomical structures within three-dimensional computed tomography (CT) scans. Applications include selective retrieval of patients images from PACS systems, semantic visual navigation and tracking radiation dose over time. The main contribution of this work is a new, continuous parametrizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012